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The relative role of outer- and wall-layer structures in the dynamics of the near-wall 
region of a turbulent boundary layer was explored by examining the scaling of the 
spanwise correlation coefficient between the wall shear stress and the streamwise 
velocity fluctuation, RTu(z), within narrow frequency bands spanning the entire 
turbulence spectrum. The scaling characteristics of RTu( z )  within the individual 
frequency bands indicate that one can separate the contribution to the streamwise 
velocity fluctuations, in the buffer and logarithmic regions, due to outer-layer 
structures from those due to wall-layer events. Results provide insight into the lack 
of wall scaling for the conventional correlation coefficient, RTU(z), in the near-wall 
region. Moreover, the ‘negative dip’ in R,,(x+), which has often been associated with 
the low-speed streaks, was found to exist within certain frequency bands for all 
Reynolds numbers investigated (1579 < Re, < 5961). More interestingly, it is shown 
that, although the energy of the outer-layer structures increases with Reynolds 
number to overwhelm the streamwise velocity fluctuations in the near-wall region, 
the production of the Reynolds shear stress is dominated by wall-layer eddies. The 
findings of the current investigation provide strong support for Townsend’s 
hypothesis of ‘active’ and ‘inactive ’ motions. 

1. Introduction 
1.1.  Background 

Understanding the dynamics of turbulent boundary layers remains an unyielding 
problem in today’s fluid dynamics research. During the past three decades the main 
focus of boundary-layer research has been the identification of organized, repeatable 
motions (coherent structures) and their role in the generation and sustaining of 
turbulence: for a comprehensive review see Robinson (1991a, b ) .  This type of 
research resulted in the discovery of a variety of structures with a wide range of 
scales spanning the gap between the viscous lengthscale (v/u,) and the boundary- 
layer thickness (6). Today there is considerable controversy regarding the existence 
of, the dynamical significance of and the interaction between the different structures : 
indeed, there seem to be more questions than answers in boundary-layer research. 

One of the fundamental approaches in the study of turbulent boundary layers is 
to investigate the scaling of turbulent quantities. In this approach the issue is which 
of the two competing scales in the boundary layer, i.e. inner (kinematic viscosity v, 
and wall-friction velocity u,) and outer (boundary-layer thickness S, and free-stream 
velocity U,) ,  renders a given turbulent quantity independent of Reynolds-number 
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variations. Successful scaling of a turbulent quantity with either wall (inner) or outer 
scales implies that the dynamics of the turbulent motion( s) producing the turbulent 
quantity is controlled by either the wall layer or the outer region of the boundary 
layer respectively. The drawbacks of the scaling approach are that, most of the time, 
it does not distinguish amongst contributions from different classes of structures and 
it does not provide a kinematical description of the turbulent motions involved. 
However, the approach provides a powerful tool to investigate boundary-layer 
dynamics while avoiding the subjectiveness and controversy involved in defining 
coherent structures. 

The mean velocity profile has one of the few well-established scaling characteristics 
in turbulent boundary layers, where wall variables are the appropriate scales near 
the wall, outer scales are successful away from the wall and both inner and outer 
scales are appropriate in the intermediate (logarithmic) region. Detailed reviews for 
the scaling of the mean velocity profile are given by Clauser (1956) and Laufer (1950). 
The streamwise turbulent kinetic energy, 3, scales with wall variables very close to 
the wall and with outer variables away from the wall. However, in the logarithmic 
region, both inner and outer variables fail to collapse 2 profiles (e.g. Blackwelder & 
Haritonidis 1983 and McLean 1990). For a long time, researchers have assumed that 
the turbulent stresses scale with wall variables in the near-wall region ; however, this 
conventional wisdom was challenged by high-resolution-LDV measurements of the 
streamwise, u, and normal, v, velocity components by Wei & Willmarth (1989) in 
turbulent channel flow. These LDV measurements, over the Reynolds-number range 
(based on channel half-width and centreline velocity) 300M0000, showed that 2 
scales with wall variables only up to yf x 12, while the normal, 2, and shear, UV, 
Reynolds stresses do not scale with wall variables a t  any height in the boundary 
layer. 

To gain a better understanding of the scaling of the dominant turbulent eddies 
in the boundary layer, McLean (1990) investigated the scaling of the spanwise 
two-point correlation coefficient, Ruu( z ) ,  for the Reynolds number range 
1500 <Re,  < 10290. The correlation data were obtained a t  several normal, y, 
positions such that the non-dimensional heights, y+ = yuJv and y / 6 ,  were matched 
among the different Reynolds numbers. McLean (1990) concluded that except for 
small spanwise offsets in the near-wall region, R,,(z) scaled with outer variables 
throughout the boundary layer: data were taken as close to the wall as y+ = 15. A 
similar investigation was carried out by Wark, Robinson & Naguib (1991), who 
examined the scaling of the spanwise correlation coefficient between the wall shear 
stress, 7, and the streamwise velocity, u ,  for both experimental results 
(1579 < Re, < 5961) and Spalart’s (1988) direct numerical simulation results for a 
turbulent boundary layer at Re, = 670 and 1410. In their investigation, Wark et al. 
(1991) took measurements as close to the wall as y+ = 10 and used a set of fine- 
increment spanwise offsets, Az. The scaling ofR,,(z) showed a ‘dual ’ character within 
the buffer region, where wall variables collapsed the correlation curves for small 
spanwise offsets a t  fixed y+ positions while outer variables collapsed the correlation 
curves for large spanwise offsets a t  fixed y / B  positions. In  the logarithmic region, 
R,,(z) scaled with outer variables over the entire range of spanwise offsets. 

Generally, most of the emphasis in boundary-layer research has been placed on the 
near-wall region where most of the Reynolds stress and turbulent kinetic energy 
production takes place. However, the failure of turbulent quantities to scale on inner 
variables in the near-wall region leads investigators to believe that the outer-layer 
structures play a role in wall-layer dynamics, i.e. there is inner-outer interaction. 
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The existence of large-scale structures whose effect is felt simultaneously in the near- 
wall and outer regions has been documented through the correlation measurements 
from Brown & Thomas (1977), the simultaneous rack probe measurement from Chen 
& Blackwelder (1987), the conditionally averaged structures from Wark & Nagib 
(1991), and others. Although the large-scale turbulent motions leave their imprint on 
the wall, the question is still open of whether they affect the dynamics of the flow, 
leading to the generation of the turbulent shear stress and kinetic energy in the 
near-wall region, or their effect near the wall is merely an ‘inactive’ motion as 
hypothesized by Townsend (1961) and further investigated by Bradshaw (1967). 

1.2. Objectives 
The existence of turbulent motions that scale with wall variables in the near-wall 
region is more than just an intuitive idea; for example, the prominent wall-layer 
streaky structure is known to scale with wall variables (Smith & Metzler 1983). In  the 
present paper, the scaling of the spanwise correlation coefficient R,,(z) will be 
further explored in order to understand the lack of wall scaling in the near-wall 
region. Rather than calculating the conventional correlation which arises due to an 
indiscriminant integral effect of different types of structures, the correlation 
coefficient R,, ( z )  will be determined for narrow-band-passed 7 (measured at the wall) 
and u (measured at  different y-positions in the buffer and logarithmic regions) signals 
and their scaling will be examined. If R,,(z) for the temporally filtered signals scale 
with either wall or outer variables then the dynamics of the turbulent motion(s) 
within the passed frequency band is, presumably, solely controlled by the wall region 
or outer layer respectively. If successful, the approach will provide a means of 
isolating the contribution of outer-layer structures to the turbulent fluctuations from 
those due to wall-layer structures. Finally, an attempt will be made to assess the 
contribution and relative importance of outer- and inner-layer structures to the 
dynamics of turbulence in the near-wall region. 

2. Data acquisition and analysis 
2.1. Experimental set-up 

Experiments were carried out in the Mark V. Morkovin low-turbulence-intensity 
closed-return wind tunnel at IIT. The turbulent boundary layer develops along a 
mirror-finish aluminium flat plate which is located in the 91 cm high x 61 ern 
wide x 6 m long test section, downstream of a 4 : 1 contraction. The flat plate is 
positioned 30 em above the test section floor, leaving a 61 cm x 61 cm flow area on 
top of the plate. Transition to turbulence is triggered using a flush-mounted 
sandpaper strip, located about 20 em downstream of the leading edge of the flat 
plate. A movable ceiling is adjusted to attain a zero streamwise pressure gradient in 
the test section. 

The same data set as that reported by Wark et al. (1991) was used for the current 
investigation : a brief description follows. Six different Reynolds numbers covering 
the range, 1579 <Re, < 5961, were attained by changing the free-stream velocity 
(U,)  while maintaining the same streamwise (x) measurement location. The Reynolds 
numbers and the corresponding relevant boundary-layer parameters can be found in 
table 1. 

Hot-wire probes were used to measure the fluctuating wall shear stress (7) and the 
fluctuating streamwise velocity (u) simultaneously. The wall-shear probe was made 
up of a Plexiglas plug whose surface is coated with Ardyl (a material having a low 
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I;, ( 4 s )  u, (m/s) 0 (cm) Re, If 

4.5 0.20 0.53 1579 6.5 
5.3 0.23 0.59 2050 7.5 
6.7 0.27 0.65 2841 8.8 
9.9 0.38 0.65 4155 12.4 

11.8 0.44 0.64 4939 14.3 
14.6 0.53 0.63 5961 17.2 

TABLE 1. Boundary-layer parameters 

thermal conductivity) on top of which a hot wire is placed and soldered to  two prongs 
that pass through the plug. A conventional static calibration procedure was used to  
calibrate the wall-shear probe. The calibration velocity was taken as the friction 
velocity (uT), which was known a priori using a Clauser fit to a set of mean velocity 
profiles which were acquired a t  a number of wind tunnel velocities covering a 
sufficiently wide range. I n  a detailed study of wall-shear-stress measurements, 
Alfredsson et al. (1988) showed that a static calibration procedure for a probe similar 
to  the one used in the current investigation was adequate for dynamic measurements. 
The streamwise velocity was measured using a single-wire probe. The hot wires used 
for measurements of both r and u were 2.5 pm in diameter and were copper plated 
leaving a sensing length, I = 0.5 mm ( I +  (=  Zu,/v) values are given in table 1 ) .  

The single-wire probe was used to  measure u in a two-dimensional measurement 
grid. The measurement positions were chosen such that y+ = 10, 15, 28, 50 and 100 
and y / B  = 0.078, 0.265 and 0.445 were matched for the boundary layers a t  different 
Reynolds numbers. The spanwise spacing between successive grid locations (Az) was 
0.38 mm (Az+ = 5-13) for the first five positions, 0.5 mm (Ax+ = 6.5-17) for the 
intermediate seven positions, and 1.02 mm (Az+ = 13.5-35) for the last five positions. 
Spanwise and normal probe movements were achieved using a computer-controlled 
two-dimensional traversing mechanism. All data were digitized and long time series 
of 204800 data points per probe were acquired a t  each location at  a non-dimensional 
digitization increment of At+ = 2. 

2.2. Data processing 
Prior to calculating RTU(z) ,  the acquired r- and u-signals were digitally band-pass 
filtered. Since there was no a priori knowledge of what cutoff frequencies to choose 
for the different filters, the entire spectrum of the turbulent fluctuations was 
systematically divided using 10 equal-width band-pass filters, in addition to a single 
low-pass filter. The filters used were zero-phase FIR digital filters, designed using a 
program by McClellan, Parks & Rabiner (1979). Filtering of turbulent signals was 
achieved by taking the FFT of both the turbulent signal and the impulse response 
of the filter, followed by multiplying the two transforms in the frequency domain 
(using the overlap-add method for long time series), and finally taking the inverse 
FFT of the multiplied signal. Figures l (a)  and l ( b )  show an example of the 
normalized power spectral density for the non-filtered turbulent signal (solid line) 
and for the same turbulent signal when filtered using each of the 11 filters (numbered 
0, 1 ,2 , .  . . , l o )  on semi-log and log-log coordinates respectively. Note that the cutoff 
frequencies for the different filters are scaled on wall variables. A sample turbulent 
time series before and after filtering, using filters 0, 1 and 2 (which contain about 
85% of the energy in the time series), is shown in figure 2. It can be seen from the 
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FIGURE 2. A sample turbulent signal before (top) and after filtering (using filters 0, 1 and 2). 
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figure that the filtered time series follow the original turbulent signal, in the 
appropriate frequency band. 

The spanwise correlation coefficient of the filtered signals was calculated using the 
equation 

l N  
- C 7(xo3 O , O ,  t i )  u(x0, y, z ,  ti) 
N,,l 

RTU(X = 0, y, z ,  t = 0) = 9 

7rms urms 

where 7 is the filtered fluctuating streamwise wall shear stress, u is the filtered 
fluctuating streamwise velocity, x, y and z are the steamwise, normal and spanwise 
offsets between the wall-shear and velocity probes, and t is the time delay between 
the 7- and u-signals. The subscript rms denotes the standard deviation of the filtered 
fluctuating quantity and N is the total number of data points in the time series 
(N = 204800). 

3. Results 
3.1. Scaling of the spanwise correlations 

The scaling of the conventional correlation coefficient RT,(z) in the buffer layer is 
demonstrated by figure 3 (taken from Wark et al. 1991). The figure shows the 
dependence of R,, on the spanwise separation between the single-wire and wall-shear 
probes for a set of experimental and Spalart’s (1988) direct numerical simulation 
(DNS) results. In  figure 3 ( a ) ,  one can see that for y+ = 10, R,,(z) scales fairly well 
with wall variables for z+ < 40 while for y / B  = 0.078 (figure 3b) ,  careful inspection 
reveals that for the highest three Reynolds numbers outer variables collapse R,,(z) 
for z / O  2 0.5. It is also interesting to note that the prominent negative peak of the 
spanwise correlation coefficeint a t  z+ z 50 (e.g. see Kreplin & Eckelmann 1979), 
which has been known to correspond to one-half the average spanwise spacing of the 
low-speed streaks, cannot be seen in any of the results shown in figure 3. These 
intriguing characteristics of R,,(z) and its scaling in the near-wall region motivated 
the filtered time-series analysis, the results of which are presented below. 

Filters 0, 1 and 2 contain about 85% of the energy in the streamwise velocity 
fluctuation and, hence, for the remainder of the paper, discussion will mainly focus 
on these filters. In  addition, to facilitate presenting the results, the spanwise 
correlation coefficient obtained when using filter n will be denoted by ,$,,(z). Results 
for the correlation coefficient obtained in the buffer layer using filter 0 are shown in 
figures 4 and 5 :  figure 4 shows &,,(z+) obtained at fixed y+ values (10, 15 and 28), 
while figure 5 depicts ,,R,,(z/B) when matching y / B  = 0.078 (corresponding y+ range: 
5.517.8). It is clear from the figure that when scaled with inner variables, the 
correlation results experience a strong Reynolds-number dependence, where higher 
Reynolds numbers result in larger correlation coefficients. Alternatively, when scaled 
with outer variables (figure 5 ) ,  ,,R,,(z/B) is less sensitive to the change in Reynolds 
number. 

Since $,,(z) results scale better with the outer lengthscale, it would be more 
appropriate to use filters with cutoff frequencies that match when scaled with outer 
variables. To arrive at the appropriate cutoff frequency in outer variables, consider 
the power spectral density (p.s.d.) results shown in figure 6(a )  for y/B = 0.078. In the 
figure, the p.s.d. for six different Reynolds numbers is normalized such that the area 
under the semi-log plot is ufms/Vm. I n  the frequency range log(f”) < -2.00 (or 
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coefficient at y/O = 0.078, matching f" = fO/Um for filter 0. Symbols in (b) as in (a). 

f" = f S / U ,  < 0.01, corresponding to &23 Hz for Re, = 1579-5961), an excellent 
collapse of the data in figure 6(a) is obtained. Thus, i t  appears that the appropriate 
cutoff frequency for the outer-scaled structures is less than or equal to 8 Hz for 
Re, = 1579, and 23 Hz for Re, = 5961, whereas the cutoff frequency used for filter 0 
is f' = fv/u: = 0.0025 (or 6-46 Hz for Re, = 1579-5961). 

Figure 6 ( b )  shows R,,(z/S) for a set of filters which were designed to have the same 
non-dimensional cutoff frequency, f" = 0.008 (this corresponds to f w 6-18 Hz for 
Re, = 1579-5961). Compared to the results in figure 5, the data in figure 6(b )  show 
a slight improvement in data collapse for small spanwise offsets ; however, some 
sensitivity to Reynolds number is still observed. It is, however, interesting to note 
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that the sensitivity of ,,R,,(z/B) to Reynolds number shows two opposite trends at  
small and large z/€' values. For small z / B  values, ,,R,,(z/B) decreases with Reynolds 
number, whereas for large z / B  values, $,,(z/B) seems to increase in a step fashion as 
the Reynolds number is increased from the lowest three Reynolds numbers to the 
highest three Reynolds numbers. 

One possible explanation for the relative lack of scaling for filter 0 is the 
contamination received from other parts of the turbulence spectrum. To clarify, 
consider the correspondence between the one-dimensional and three-dimensional 
spectra. Since the one-dimensional k, spectrum results from an integration over all 
values of k, and k,, there is contamination of the low-wavenumber spectrum by 
structures with high k, and k, wavenumbers. This contamination results in 
structures with a higher wavenumber magnitude aliasing the lower-wavenumber 
range in the one-dimensional k, spectrum. On the other hand, the high k, 
wavenumber spectra did not suffer significantly from this aliasing effect since the 
power spectral density at  high wavenumbers is much less than a t  lower wavenumbers 
(see Bradshaw 1971, p. 40). Since the frequency spectrum is inherently one- 
dimensional, as in the k, spectrum, contamination of the low-frequency part of the 
spectrum by higher-frequency three-dimensional structures, which scale with inner 
variables, is plausible. The scaling of higher-frequency structures with wall variables 
(evidence of which is provided below by the results for filters 1 and 2) suggests that 
the aliasing of the high-frequency spectrum by even higher-frequency structures does 
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not alter the scaling conclusions. Indeed, the correlation results pertaining to filters 
3-10 (not shown here), although dynamically insignificant, scale with the inner 
lengthscale. 

The Reynolds-number sensitivity of &,,(z/O) a t  large spanwise offsets is more 
likely to be attributable to low-Reynolds-number effects. For the range of Reynolds 
numbers investigated (1579 < Re, < 5961), the outer layer does not reach equilibrium 
in the sense of Coles (1962) (where Re, has to be larger than 6000). The minimum 
Reynolds number for the outer-scaled correlations to collapse (if outer scaling holds) 
is, perhaps, not as stringent as Cole's limit, since McLean (1990) showed that his 
conventional correlation results collapsed when scaled with outer variables for 
Re, > 3000. Close inspection of the results in figure 6 (b) a t  large z / B  values reveals a 
good collapse (with a certain degree of scatter which is probably due to a smaller 
sample size for the largest scales in the low-frequency range) for the highest three 
Reynolds numbers (Re, > 3000). Furthermore, this minimum Reynolds number for 
the collapse of the correlations seems to depend on whether the turbulent quantity 
scales on inner or outer variables : the results for filters 1 and higher (discussed below) 
show no Re, dependence, even for Re, = 1579. 

Figures 7-10 represent R,,(z) results in the buffer layer when using filters 1 and 2. 
An excellent collapse of lR,u(z) and $,,(z) values is obtained at y+ = 10, 15 and 28 
(with the exception of some data scatter a t  y+ = 15 and 28 for filter 2) when z is 
normalized with the inner lengthscale, see figures 7 and 9. Furthermore, a t  y+ = 10 
the prominent negative correlation peak is depicted, from figure 7 ,  at z+ = 50, and 
from figure 9 at z+ z 35-40, where the negative correlation peak reaches a magnitude 
of about 0.25 : these spanwise locations match the values for one-half the average and 
the most probable wavelengths of the low-speed streaks (A+ = 100 and 75 
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respectively) as found in the visual investigation of Smith & Metzler (1983). Another 
interesting feature of the results in figures 7 and 9 is that the structures in the 
frequency band allowed by filter 2 produce the maximum value for the negative 
correlation peak. Figures 8 (a) and 10(a) demonstrate that the outer lengthscale fails 
to collapse ,R,,(z) and .JITu(z) values in the frequency band allowed by filters 1 and 
2;  for example, as Reynolds number increases, the negative correlation peak shifts 
to lower z / e  locations. For the results shown in figures 8 ( b )  and 10 ( b ) ,  a set of filters 
corresponding to filters 1 and 2 (i.e. covering a similar frequency range) but with 
cutoff frequencies which scale on outer variables, were used. It is clear from the 
results that although the scaling is better compared with matchingf+ for the cutoff 
frequencies, the degree of collapse is significantly worse than when scaled with wall- 
layer variables. 

The interesting results of figures 7 and 9, in relation to the low-speed streaks, may 
be linked to an earlier study by Gupta, Laufer & Kaplan (1971), who recognized that 
the quasi-periodic structure of the near-wall region could not be depicted in the 
conventional long-time correlations. Using short-time correlations (VITA technique), 
they were able to extract instantaneous periodic signatures ; however, they could not 
arrive at  a stationary form of the correlation function that they could use to define 
a statistically meaningful wavelength. Instead, they used statistical techniques to 
extract the distribution of wavelengths from the short-time correlations, which they 
later used to determine an average wavelength of A+ w 100. 
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FIGURE 11. Inner scaling characteristics of the correlation coefficient in the logarithmic region 
(y' = 50 and 100) for the filtered time series, using filter 0. 

Figures 11-16 extend the R,,(z) results to the logarithmic region. The correlation 
coefficient due to  the low-frequency component, &u(z), experiences a definite 
Reynolds-number effect when z is scaled using the inner lengthscale (figure 11 : 
y+ = 50 and loo), while a good collapse is obtained when z is normalized by the outer 
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lengthscale (figure 12 : y / 8  = 0.265 and 0.445). Moreover, when comparing the results 
of figure 5 ( y / 8  = 0.078) and figure 12 (y/8 = 0.265 and 0.445), it is seen that $,,(z/O) 
collapses better as y/8 increases. This agrees with one's expectation that outer-layer 
structures become increasingly dominant as one moves away from the wall. 

Similar to the buffer layer, the results for filter 1, shown in figures 13 and 14, 
indicate that the inner lengthscale collapses 1R7,(z) better than the outer lengthscale 
in the lower logarithmic region. The correlation coefficient values for filter 2 are 
approximately zero (see figures 15 and 16) which suggests that the structures in this 
frequency band do not contribute significantly to R7,(z) in the logarithmic region. 
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FIGURE 14. Outer scaling characteristics of the correlation coefficient in the logarithmic region 
(y /B = 0.265 and 0.445) for the filtered time series, using filter 1 .  Symbols as in figure 12. 
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FIGURE 15. Inner scaling characteristics of the correlation coefficient in the logarithmic region 
(y' = 50 and 100)  for the filtered time series, using filter 2. Symbols as in figure 11.  

3.2.  Choice of cutofl frequencies 
Two important questions which directly impact the results presented above are, first, 
how much lower in value can f' for the cutoff frequency of filter 1 be, and still 
produce excellent collapse with wall variables (figures 7 and 9) and, secondly, when 
choosing the cutoff frequencies for different filters, should they be scaled on inner or 
outer variables ? 

To answer the first question, five band-pass filters were designed to span the 
narrow frequency band which extends from zero to the lower cutoff frequency of 
filter I .  The power spectra of the turbulent signal after filtering with these five filters 
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FIGURE 17. Power spectral density of the unfiltered (solid line) and filtered turbulent signal (for 

filters A, B, C, D, E and 1) plotted on log-log coordinates. 

(labelled A, B, C, D and E) are plotted in figure 17 along with the power spectra when 
filtered using filter 1 and the unfiltered turbulent signal. As the frequency range 
increases from the lowest frequency (filter A) to the highest frequency (filter E), the 
spanwise extent for which wall scaling collapses R,,(x+), gradually increases from 
z+ z 10 to z+ z 60, as seen from figure 18 for filters A, C and E. However, wall scaling 
is not observed for the entire range of spanwise offsets for filters A-E. It is also 
interesting to note that the existence of a wall-scaled region, albeit small, for filters 
A 4  may explain the sensitivity of &,,(z/B) to Re, at small spanwise offsets (figures 
5 and 6 b ) .  That is, although outer-layer effects appear unimportant beyond 
f'z 0.0025 (cutoff frequency of filter l) ,  wall-layer structures seem to have a 
measurable effect on the correlation coefficient in the low-frequency range with this 
effect getting weaker for lower frequency values. 

Moving on to  the second question, the correlation results a t  y+ = 10, obtained for 
a set of filters corresponding to filters 1 and 2, but with cutoff frequencies which scale 
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FIGURE 18. Inner scaling characteristics of the spanwise correlation coefficient results a t  y+ = 10 
for the filtered time series, using filters A, C and E. 

on outer variables, are presented in figures 19(u) and 19(b) respectively. Comparing 
figure 19 to figures 7 and 9, it is evident that wall scaling is attained only when the 
cutoff frequencies of the filters are scaled on wall variables. Alternatively, comparing 
figure 5 to figure 6 ( b ) ,  one does not observe a significant difference in the data 
collapse with outer variables when choosing the cutoff frequency of the low-pass filter 
to scale on wall or outer variables. Thus, i t  seems appropriate to choose a high-pass 
filter with a cutoff frequency off' x 0.0025 to account for the majority of the wall- 
layer turbulent motions, and a low-pass filter with a cutoff frequency smaller than 
f' z 0.0025 to isolate turbulent motions dominated by outer-layer structures. 

4. Discussion 
The results presented above may be used to explain the lack of wall scaling of the 

conventional correlation coefficients, R,,(z) and R,,(z), in the near-wall region as 
found in the results by McLean (1990) and Wark et ul. (1991). The results from figure 
4 indicate that the low-frequency structures give rise to  a correlation coefficient that 
increases monotonically with increasing Reynolds number when scaled with wall 
variables. Since the spanwise correlation coefficient, R,,(z), due to structures that 
occupy the remainder of the spectrum (i.e. filters 1-10) scales on the inner lengthscale 
(see figures 7-10), one can conclude that the low-frequency structures are responsible 
for the lack of wall scaling of R,,(z). Furthermore, the positive values of oRru(z+) when 
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FIGURE 19. Inner scaling characteristics of the spanwise correlation coefficient results at y+ = 10, 
for the filtered time series; matchingfO = frY/U, for (a) filter 1 and (a) filter 2. Symbols in ( b )  as in 
(a). 

added to the negative values of lR,,(z) and &,(z) (with appropriate weighting 
factors) result in a positive correlation coefficient, thus obscuring the prominent 
negative peak of the correlation curves. 

Based on the findings of the current investigation, one can reasonably assume that 
the contribution of the outer-layer structures to the streamwise velocity fluctuations 
in the near-wall region are confined within the frequency band of filter 0, whereas the 
rest of the u-spectrum is occupied by turbulent motions that scale on the viscous 
lengthscale. This raises the question of which of these two types of motions is more 
important in the dynamics of the wall layer. The percentage contribution to the total 
streamwise fluctuations energy (2) in the near-wall region, due to outer-layer 
structures (filter 0) and energetic wall-layer eddies (filters 1 and 2), is plotted in figure 
20 for five different yi positions. The energy in the higher-frequency structures 
accounts for only 1 to 2 % of the total u-fluctuations and is not included in figure 20. 
A t  low Reynolds numbers most of the u-energy is contained in wall-layer eddies; 
however, as Reynolds number increases, the contribution from the outer-layer 
structures to 2 increases and exceeds the contribution from wall-layer eddies. A very 
pertinent question at this point is whether wall-layer eddies are significant a t  all a t  
high Reynolds numbers of practical interest. 

The results of figure 20 should, however, be viewed with caution. As Bradshaw 
(1967) pointed out, the successful scaling of turbulent eddies with wall variables 
implies that these eddies are responsible for producing the turbulent shear stress in 
the near-wall layer. The information obtained from figure 20 indicates that the 
energy of outer-layer structures increases with Reynolds number, but it does not 
shed light on the relative role of outer- and inner-layer structures in relation to the 
process of Reynolds-stress production. This was investigated further using a set of' 
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FIGURE 21. Relative contribution to Reynolds-stress production at y' = 35 due to band-pass 
filtered u- and v-signals, using filters &lo, for Re, = 1600 (0) and 4600 (17). 

simultaneous u and w measurements taken using an x -wire probe positioned in the 
boundary layer at  y+ = 35 for Re, = 1600 and 4600. Both u- and v-signals were 
filtered using the 11 filters described in this paper, and the Reynolds stress (h) was 
subsequently calculated for each frequency band. The percentage of the total 
Reynolds stress produced by turbulent motions within the individual frequency 
bands of the different filters is plotted in figure 21 for the two different Reynolds 
numbers. Notice that the sum of the results in figure 21 is about 82% (instead of 
100%) since certain frequency bands in the turbulent spectrum were not passed by 
any of the filters (see figure 1). The results indicate that, independent of Reynolds 
number, the Reynolds-stress production is dominated by wall-layer eddies which 
produce about 75430% of the total Reynolds stress with the eddies in the frequency 



Wall-layer dynamics 559 

band of filter 1 contributing most to the production process. The authors are aware 
of the fact that the x-wire data may be affected by sensor averaging effects; 
however, if anything, a better probe resolution is expected to increase the 
contribution of higher-frequency wall eddies to UV production. 

Since R,,(z+) due to turbulent motions with frequencies allowed by filter 1 produce 
the negative correlation peak (see figure 7) commonly associated with the low-speed 
streaks, the results from figure 21 suggest that these streaks, and related turbulent 
motions, are responsible for most of the Reynolds-stress production in the near-wall 
region. The breakup of low-speed streaks into violent turbulent motions leading to 
a considerable amount of Reynolds-stress production has been known since the early 
work of Kim, Kline & Reynolds (1971). Furthermore, the dominant role of wall-layer 
structures in the production of Reynolds stress in the near-wall region agrees with 
the wall scaling of the frequency of occurrence of Reynolds-stress-producing events 
(a generally, but not exclusively, accepted result). Evidence of wall scaling of the 
frequency of occurrence of Reynolds-stress-producing events can be found in the 
work by Blackwelder & Haritonidis (1983) and Luchik & Tiedermann (1986)’ 
amongst others. 

The above results provide strong support for Townsend’s hypotheses of ‘active ’ 
and ‘inactive’ motions which views the turbulent motion in the wall layer to be 
composed of two parts: (i) an ‘active’ wall-layer turbulent motion which is 
responsible for the production of the turbulent shear stress and, hence, its statistical 
properties scale on wall variables; and (ii) a large-scale ‘inactive’ motion which 
neither interacts with the wall-layer eddies (due to the disparity in lengthscales 
between inner- and outer-layer structures) nor contributes to the turbulent shear 
stress. The ‘active’ and ‘inactive’ motions theory was explored by Bradshaw (1967), 
who used frequency spectra measured in zero- and adverse-pressure-gradient 
boundary layers. The universality of the spectra when scaled on T and y in boundary 
layers with outer motions of varying strength (higher adverse pressure gradients 
correspond to stronger outer motions), implied that the outer motions were 
‘inactive’ within the wall layer. More recent support of Townsend’s hypotheses was 
also given by Beljaars, Krishna Prasad & de Vries (1981) using results from a 
proposed structural model, and the correlation results in zero- and adverse-pressure- 
gradient boundary layers of McLean (1990). 

5. Conclusions 
Band-pass filters were used to investigate the relative contribution of outer-layer 

and wall-layer structures to the spanwise correlation coefficient R,,(z). Structures 
contributing to the low-frequency range (f” = fO/U, < 0.008) were found to be 
responsible for the lack of scaling of R,,(z+) and for the disappearance of the 
‘negative dip ’ (often associated with low-speed streaks) of the spanwise correlation. 
This signature of the low-speed streaks was found to exist in the intermediate 
frequency range for all Re, investigated and was shown to exhibit wall-layer scaling. 

Investigating the relative role of the individual structures in the dynamics of the 
near-wall region, it was found that the contribution of the outer-layer structures to 
the streamwise velocity fluctuations increases with increasing Reynolds number. 
Nevertheless, the Reynolds-stress production was found to be dominated by wall- 
layer structures and the role of outer-layer structures in the production process is, 
almost, ‘inactive’ as speculated by Townsend in his hypothesis of ‘active’ and 
‘inactive ’ motions. 
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